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Coupled Processes and In Situ
Stabilization

• In situ stabilization results from a transient
perturbation of the biogeochemical environment
– Application of treatment
– Remobilization of contaminants from less stable form
– Sequestration in more stable form

• Stabilization must persist for decades to
centuries after active treatment ends
– Biogeochemical environment will reverts to pre-

treatment background conditions
– Coupling between the rates of local biogeochemical

processes and the global fluxes



Proposed Stabilization Strategy

• Manipulate the kinetics of calcite precipitation in
an aquifer in order to increase the rate of
coprecipitation of divalent metals (eg. 90Sr+2+,
60Co2+, Pb2+, Cd2+) from the aqueous phase.

(1-c)Ca2+ + cMe2+ + 2HCO3
- ‡ Ca(1- c)MecCO3 + CO2 + H2O

• Co-precipitation of metals in calcite at arid
western sites is compatible with the long term
subsurface biogeochemistry



Divalent Metals and Radionuclides are
Common at DOE sites

Riley and Zachara 1992
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90Strontium Contamination

INEEL groundwater, perched
water (INTEC)

• Up to 84 pCi L-1 in a 1.6 km2

groundwater plume
• Up to 320,000 pCi L-1 in

perched water

Hanford soils, groundwater
(100N)

• Est in-ground inventory of
75 to 89 Ci

• Groundwater levels up to
6000 pCi L-1

EPA Regulatory Limits for 90Sr in drinking
water: 8 pCi L-1

Contaminant inventories are
largely associated with the
solid media, not the water



In Situ
Stabilization Concept

2NH4
+

  + HCO3
- + OH-

Ca2+

Ca2+

Sr2+

Urease

Time

pH

Ca2+

Ca2+

Sr2+

Ca2+

Ca2+

(NH2)2CO  + 3H2O

Sr2+

NH4
+

(1-c)Ca2+ + cSr2+ + HCO3
-

Ca
(1-c) Sr

c CO
3

Ca
(1-c) Sr

c CO
3

CaCO3



Results to Date (1)

• Demonstrated in laboratory and field the linkage
between urea hydrolysis and calcite
precipitation.

Urea Hydrolysis Rates UP-1
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Results to Date (2)

• Observed that Sr is incorporated into calcite
precipitated by urea hydrolyzers, with higher
distribution coefficient than in abiotic systems
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Snake River Plain Model Aquifer System

• 6.67 liter total volume (15%
porosity)

• 1 liter (1 kg) of water
• 5.67 liter (15.3 kg) of

geomedia (CEC only reactivity)
•  2.70 kg liter-1 (grain density)

 2.29 kg liter-1 (bulk density)
• React 2 mmoles aqueous urea
• Kinetics

– 1st order for urea hydrolysis
– 2nd order chemical affinity for

calcite precipitation

• Geochemist’s Workbench
simulations

mg L-1 mg L-1

Ca2+ 70.1 Na+ 25.8
Mg2+ 10.9 K+ 4.0

HCO3
-

69.8 Cl- 124

NO3
-

5.2 SO4
2-

43.0

pH 8.15 1CEC 1.5
T (oC) 14

2KdSr 5.0

1(meq 100 g-1) 2(mL g-1)



Kinetic Model
Urea Hydrolysis
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Kinetic Model
Calcite Precipitation
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Batch System Calculations
(No Transport)

NAME Tue Apr 29 2003

0 100 200 300 400 500

8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

9
9.1
9.2
9.3

Time (days)

pH

NAME Tue Apr 29 2003

0 100 200 300 400 500
0

.5

1

1.5

2

Time (days)

S
om

e 
flu

id
 c

om
po

ne
nt

s 
(m

m
ol

es
)

Ca
++

HCO3
-

NH
4
+

• pH and HCO3
- initially rises due to urea hydrolysis, then decrease as

calcite precipitates.

• Ca2+ initially rises due to exchange with NH4
+, then decrease as

calcite precipitates.



Batch System Calculations
(No Transport)

NAME Tue Apr 29 2003
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• Hydrolysis of 2 mmol urea results in precipitation of almost 2 mmole

of calcite.

• Q/K rises rapidly as urea hydrolyzes faster than calcite precipitates,
Q/K falls as the two rates become equivalent.



Reactive Transport
(6 month injection, 1-D, 730 m, 1 pore volume year-1)
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• High pH moves through system.  Near ambient pH values return in
less than 18 months

• High [Ca2+] moves through system in early times as NH4
+

exchanges for Ca2+.  During later times low [Ca2+] moves through
system as Ca2+ exchanges for NH4

+



Reactive Transport
(6 month injection, 1-D, 730 m, 1 pore volume year-1)
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• Calcite precipitates through the entire regions and is essentially
complete within 2 years.

• Q/K is elevated (> 30) during early times and slightly depressed (but
> 1) during later times.  This condition persists until NH4

+ is swept
from the system (decades).



Summary of Results

• Urea hydrolysis can be used to manipulate
in situ biogeochemistry and facilitate calcite
precipitation

• Process optimization is a trade off between
rapidly precipitating calcite (high urea
injection concentrations) and long-term
calcite stability (low urea injection
concentration)



Couple Process
Modeling Implications

• Results from batch and advective simulation
differ

• Calcite precipitation and biomass development
can influence flow field (Is this predicable?)

• Over long time frames process other than cation
exchange may become important (e.g., rock
weathering?)

• Over long time frames ammonium oxidation may
be important (e.g. controlled by O2 flux?)



Coupled Processes
Experimental Implications

• Field demonstrations are important, but not a
good place to develop fundamental
understanding.
– Expensive

– In situ monitoring of chemical parameters is limited

– Hard to control

– Impractical to replicate

• Well-controlled and monitored couple process
experiments needed to parameterize models


